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A B S T R A C T

Objective: The aim of the study was to investigate the relationship between germline variations as a prognosis
biomarker in patients with advanced Non-Small-Cell-Lung-Cancer (NSCLC) subjected to first-line platinum-based
treatment.
Materials and Methods: We carried out a two-stage genome-wide-association study in non-small-cell lung cancer
patients with platinum-based chemotherapy in an exploratory sample of 181 NSCLC patients from Caucasian
origin, followed by a validation on 356 NSCLC patients from the same ancestry (Valencia, Spain).
Results: We identified germline variants in SMYD2 as a prognostic factor for survival in patients with advanced
NSCLC receiving chemotherapy. SMYD2 alleles are associated to a decreased overall survival and with a reduced
Time to Progression. In addition, enrichment pathway analysis identified 361 variants in 40 genes to be involved
in poorer outcome in advanced-stage NSCLC patients.
Conclusion: Germline SMYD2 alleles are associated with bad clinical outcome of first-line platinum-based
treatment in advanced NSCLC patients. This result supports the role of SMYD2 in the carcinogenic process, and
might be used as prognostic signature directing patient stratification and the choice of therapy.
Microabstract: A two-Stage Genome wide association study in Caucasian population reveals germline genetic
variation in SMYD2 associated to progression disease in first-line platinum-based treatment in advanced NSCLC
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patients. SMYD2 profiling might have prognostic / predictive value directing choice of therapy and enlighten
current knowledge on pathways involved in human carcinogenesis as well in resistance to chemotherapy.

1. Introduction

Lung cancer is the most common cancer in the world, and the
leading cause of mortality among cancer-related deaths. The Non-
Small-Cell-Lung-Cancer (NSCLC), being the most common form, has an
overall 5-years survival of less than 15% [15]. NSCLC is a histological
diverse group of tumors, with major classes being squamous (SCC),
adenocarcinoma (ADC), and large cell carcinoma (LCC). Despite the
enormous heterogeneity, these tumors have been treated homo-
geneously for a long time with cytotoxic chemotherapy as the choice
treatment [17].

Platinum-based chemotherapy is still widely used for treatment of
the vast majority of NSCLC patients with advanced-stage disease, with
the exception of cases bearing EGFR, BRAF, ROS1 or EML4-ALK tumor
mutations. The latter have greatly benefited from the advances
achieved in the last ten years in targeted therapy based on somatic
genetic/molecular profiling. While chemotherapy provides palliation,
advanced NSCLC remains incurable in most cases since acquired re-
sistance is common, response rates are only 15%–30%, and median OS
is less than 12 months. Resistance can arise from a several causes (drug
delivery, altered target, tolerance to damage, etc…) [16] and differ-
ences observed in therapy efficacy could be explained by the impact of
host genotype variants on target/resistance factors.

Customization of chemotherapy has relied on tumor cell expression
profiles of specific genes. Candidate gene studies have indicated pos-
sible association to response of genetic variants in genes of the platinum
pathway (reviewed by Hildebrandt et al. [20]) and DNA-repair genes
[32]. Genome-wide association studies (GWAS) have been used suc-
cessfully to identify germline genetic variants associated with an in-
creased risk of developing lung cancer including NSCLC, and have been
applied to identify prognostic biomarkers [22,27,49,50,54,55] as well
as to identify genetic variability associated to adverse effects to che-
motherapy [6,7]. Furthermore, re-positioning of GWAS-derived germ-
line predisposition markers as prognostic markers, have been success-
fully reported in other cancer forms.

The aim of this study was to investigate the relationship between
germline variants to identify prognosis biomarkers for clinical outcome
in patients with advanced NSCLC subjected to first-line platinum-based
treatment. In this study we report a genome-wide scan study in two
independent samples from the same ancestry (Spain).

We present evidence of germline variation in the SMYD2 affecting
the clinical outcome of advanced NSCLC patients. SMYD2 profiling
might have prognostic/predictive value directing choice of therapy and
enlighten current knowledge on pathways involved in human carcino-
genesis as well in resistance to chemotherapy.

2. Material and Methods

2.1. Patients

This study was approved by the institutional review board of the
IGTP. The recruitment of NSCLC patients in the discovery phase and
validation phase was approved by the institutional review board of each
participating institution.

2.2. Discovery sample

Patients included in the study were selected from the BREC clinical
trial study (Multicenter, Predictive, Prospective, Phase III, Open,
Randomized, Pharmacogenomic Study in Patients with Advanced Lung

Carcinoma (BREC)) [35]. BREC patients with advanced NSCLC who had
not received treatment for the disease at the time they entered the study
and had a good performance status (ECOG 0–1) and measurable disease
(at least one target lesion according to the RECIST (response evaluation
criteria in solid tumors), received six to eight chemotherapy cycles. The
94% received cisplatin 75mg/m2 combined with Docetaxel 75 mg/m2
(73%) (group 1) or Gemcitabine 1250mg/m2 (27%) (group 2), both at
day 1, in 21-day cycles. Remaining 6% received Docetaxel 75 mg/m2
(group 3), on day 1 every 3 weeks. See complete description at clin-
icaltrials.gov/show/NCT00617656.

A total of 178 patients were included in the genetic analysis. All
considered patients were EGFR-WT. The median age was 62 years
(range: 39–82), 78% males, and 92% stage IV of the disease. ADC was
the most common histological subtype (56% of patients) of NSCLC,
followed by squamous cell carcinoma (SCC) (36%) and large cell car-
cinoma (LCC) (3%), 5% were grouped in other categories. The most
frequent ECOG score was 1 (64%) (33% and 1% for 0 and 2 status).
Overall progression free survival (PFS) (calculated from the date of
randomization to progression or death) was 5.3 months (95% CI
4.71–5.88), and survival time (Overall Survival OS; calculated from the
date of randomization to death) was 10.16 months (95% CI
8.32–12.01).

2.3. Validation sample

Patients included in the validation cohort were from a Multicenter
study coordinated by the Spanish Lung Cancer Group. All patients were
with advanced NSCLC, from Caucasian ancestry and the same geo-
graphical region (Valencia, Spain) [24,25,47]. Blood samples were re-
collected from 356 NSCLC stage IIIB with pleural effusion or stage IV,
who received cisplatin (75mg/m2) and docetaxel (75mg/m2) on day 1
every 3 weeks. Among 356 patients, 323 with fulfilled response data
were considered for the analysis.

The median age was 59 years (range: 31–80), 83% males. 15% of
patients had stage III and 85% stage IV of the disease. Like in BREC
patients, ADC was the most common histological subtype (51%) of
NSCLC, followed by SCC (31%) and LCC (14%), 4% were grouped in
other categories. The most frequent ECOG score was 1 (68%) (29% and
2% for 0 and 2 status). TTP was 5.53 months (95% CI 4.93–6.33) and
OS 9.9 months (95% CI 9.17–11.07).

According to the study objectives, the clinical outcomes were di-
agnosis of NSCLC and response to treatment (according to the criteria
established in the RECIST). Patients were categorized as progressing
disease if its RECIST was assessed as PD (PD) (23% BREC, 37% vali-
dation sample) and as non-progressing if their RECIST was complete
(CR) or partial response (PR) (14%, 1% and 32%, 28%) or stable disease
(31%, 34%)(SD), in both exploratory and replication cohorts, respec-
tively. The main clinical and pathological characteristics of the dis-
covery and validation samples are shown in Table 1.

2.4. Genome scan

2.4.1. Genotyping
Genome-wide genotypes were generated for the discovery sample

using SNP-array technology. The Infinium® HTS Assay automated
protocol, was used on HumanCoreExome-24v1-0 BeadChips scanned
with a HiScan confocal scanner (ILLUMINA, San Diego, CA).
Genotyping was performed at the Genomic Units of the PMPPC-IGTP.
Genome Studio version 2011.1 was used for raw data analysis. All il-
lumina internal system controls were fulfilled. Before the genetic
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association analysis, we conducted systematic quality control on the
raw genotyping data to filter both unqualified samples and SNPs.
Overall call rate was 99.89%. Samples were excluded if they failed
genotyping in more than 10% of variants. Variants were excluded if
they failed genotyping in more than 10% of samples, were non-poly-
morphic, or showed departure from Hardy-Weinberg Equilibrium
(HWE) (p value>0.0001). 40% of genotyped markers were mono-
morphic in our sample. Gender control detected a mismatch in one
sample that was included in the study after database consultation. After
these quality control steps, 181 cases with 325,762 SNPs were con-
sidered. PLINK 1.9 version [9,43] was used to perform the quality
control analysis. Genotyping of candidate SNPS in the replication
sample was done at the Spanish National Centre of Genotyping (ISCIII-
CEGEN-Santiago Node) facility by using the iPLEX Sequenom Mas-
sARRAY platform (Sequenom Inc., San Diego, CA, USA) and at PMPPC-
IGTP by Real-Time PCR, using TaqManTM (ILLUMINA, San Diego, CA)
when do not fit Sequenom's basics.

2.4.2. In silico genotyping
IMPUTE2 [21] was used to impute untyped SNPs from sequence-

based reference panels (1000Genomes, UK10K, GoNL). SHAPEIT [11]
was used for haplotype estimation prior to imputation procedures.
Imputed genotypes with IMPUTE2info lower than 0.7 were discarded
for association analysis. The best IMPUTE information score was used
for those SNPs present in more than one reference panel. Finally, from
24,873,940 imputed SNPs we considered 10,307,177 unique SNPs for
association analysis.

2.5. Population structure and relatedness

All patients in the discovery sample were used to detect population
substructure and independence. Principal Component Analysis (PCA)
was applied to detect any hidden substructure, and method of moments
(MoM) for the estimation of identity by descent probabilities was ap-
plied to exclude cases with cryptic relatedness. A Spanish population
based cohort GCAT (genomesforlife.com) and public databases
(HapMap) were used to test ancestry homogeneity before imputation
analysis [2].

2.6. Statistical analysis

We perform a multivariate logistic regression model, under an ad-
ditive model, adjusted by gender, smoking (yes/no), tumor histology
(i.e. ADCA, SCC, LCC, other), pretreatment performance status (ECOG
score) (0, 1,> 2), chemotherapy treatment group (docetaxel/cisplatin,

gemcitabine/cisplatin, docetaxel) and the first seven principal compo-
nents (PC) as covariates. Genomic control inflation for the association
results was calculated from observed and imputed data (λ=1.12). All
p-values were corrected for genomic inflation factor.

For the replication analysis we considered those SNPs with cor-
rected p-values< 1×10−5 (Fig. 1). For validation purposes, due to the
relative small sample size and the inflated or deflated size effect for
SNPs with MAF<0.01 generated from imputation methods, we con-
sidered those with an effect size (OR) in the [0.05–20] range. From
suggestive signals, alternative SNPs were selected with LDlink [30] and
FINEMAP software [3]. Both tools were used for exploring possible
functional variants via linkage disequilibrium and a shotgun stochastic
search algorithm. Selected candidates are shown in Fig. 2.

We analyze all candidates SNPs in the validation sample under the
same model assumptions, but excluding smoking, since was not re-
levant in the BREC analysis, and was not available in the replication
sample. Then a joint analysis was performed. Since differences were
evident among cohorts (Table 1), a heterogeneity analysis was per-
formed and I2 measure was estimated. Heterogeneity source was in-
vestigated by a multiple correspondence analysis [26] to detect any
data structuring within BREC and Valencia sample regarding gender,
histology, stage and ECOG categorical variables (Supplementary Fig. 1).
For replication, we performed a matched analysis with resampling.
Each Valencia's individual was matched with BREC cohort by disease
progression and stage to preserve the same clinical features before as-
sociation analysis. Then, we resampled 10,000 times and p-values were
derived and ranked. A p-value representing the 5% percentile of the p-
values distribution [13] was considered for each SNP.

Cox proportional hazard regression models were used to evaluate
survival outcomes (TTP and OS) in the validation cohort, and multi-
variate analysis was performed adjusting the Cox models by age,
gender, ECOG and disease progression status. No individual data was
available from the BREC cohort. Survival curves were computed with
the Kaplan–Meier estimator. Hazard ratios (HRs) and their 95% con-
fidence intervals were assessed to evaluate the risk of death.

We used SNPtest software [31] for association analysis in the dis-
covery sample, and PLINK 1.9 version for association analysis in the
validation sample. SNPtest allows worked seamlessly with imputation
data. R software (version 3.3.1, R Core Team, 2016) was used for data
visualization (Manhattan plot, QQ plot, Kaplan-Meier and ROC curves)
and statistical analyses. Data visualization was made with LocusZoom,
for plotting chromosomal regions.

Fig. 1. Manhattan plot for genome-wide asso-
ciation results in the BREC discovery sample.
Association p-values are expressed as
-log10(p). P-values comes from multivariate
models accounting for gender, smoking status,
histology, ECOG performance status, che-
motherapy treatment and the first seven prin-
cipal components. Red circles are the selected
peaks used for replication purposes
(MAF>0.01 and 0.05>OR<20). The blue
and red lines indicate the p-value threshold for
the candidate genes at -log10(105) and
-log10(5×108) respectively.
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2.7. Pathway enrichment analysis

In order to provide biological hypotheses from our GWAS results we
performed a pathway analysis to highlight enriched pathways based on
genes in associated loci. All genes with at least one variant at p-
value<1×10−4 were included in the analysis. We used the seq2-
pathway R package [51] to select the subset of the most significant
genes within a search radius of 150 kbps from the SNPs with an asso-
ciation p-value below 1×10−4. Pathway enrichment analysis of the
889 selected genes was performed against Gene Ontology and Re-
actome annotation data with both seq2pathway and PANTHER Over-
representation Test tool (release 20160715) [34]. The significance of
the GO terms was estimated through the adjusted p-values based on the
binomial testing with Bonferroni correction for multiple hypotheses.

2.8. Fine-mapping and functional annotation

Variant Effect Predictor (VEP) tool [33] was used for the functional
characterization of identified variants (hg19). The VEP application
determines the effect of variants (SNPs, insertions, deletions, CNVs or
structural variants) on genes, transcripts, protein and regulatory re-
gions.

3. Results

3.1. Clinical and pathological characteristics of the two-stage used cohorts

Bivariate analysis of the clinical and pathological characteristics
shows differences in tumor histological type (p=0.002), stage
(p=0.0001) and progression disease (p=6.6×10−9), with more cases
of LC, stage III and PD in the validation sample than in BREC. No other
differences in gender, age, and pretreatment performance status were
statistically significant. Regarding PD, we observed differences in tumor
histological type, slightly different in the discovery sample, but not in
the replication sample, and ECOG, related to PD in the Valencia sample

but not in BREC. Concerning chemotherapy treatment group, no sig-
nificant differences were observed in BREC. All statistically significant
differences were considered as covariates in further analyses. The
clinical and pathological characteristics of the study population are
shown in Table 1.

3.2. Twenty genomic regions show association with disease progression
outcome in the discovery sample

PCA analysis indicated that the BREC as an ethnically homogenous
Caucasian. All patients except three overlapped with the CEU ancestry
reference panel from HapMap and with the geographically matched
sample from the Spanish GCAT cohort (genomesforlife.com). The three
genetically distant patients were discarded for the genomic analysis.
The first seven PCA dimensions were incorporated in the association
analysis as covariates. No cryptic relatedness was found by estimating
identity by descent (IBD) probabilities.

Association analysis was made with observed and imputed data
recovered from three public reference panels. In the discovery phase we
observed one SNP with p-value<1×10−8, two SNPs with p-value<
1×10−7, 22 SNPs with p-value<1×10−6, 147 SNPs with p-
value< 1×10−5, 864 SNPs with< 1×10−4, 8,674 SNPS with<
1×10−3 and 90,826 SNPs with p-value< 1×10−2, associated with
PD. Resulting genome-wide association results are shown by the
Manhattan plot in Fig. 1. Top hits with a p-value<1×10−5, and (OR)
[0.05–20] were selected for replication in the Valencia sample. None of
the retained SNPs reached the genome-wide threshold. Further, as
single SNP analysis results could be misleading, we plotted genotypes
500Kb around the peak together with along additional annotation from
the GWAS catalogue, recombination rates, LD measures with genotyped
or imputed SNPs in the region, and functional annotation for each SNP.
After visualization, eight regions were retained (Supplementary Fig. 2).
Observed genotype was preferentially retained when imputed signals
were also present; three derived from in silico genotyping (imputation).
We selected additional SNPs as proxies (r2=1–0.6 on average) for

Fig. 2. Forest plot diagram of the association results of the BREC discovery dataset used for replication analysis. The variants are listed by chromosome and position
(CHR:BP) showing the IMPUTE information measure (Info) and the effect size (OR) regarding the first allele of the Alleles column. BO, best observed; BI, best
imputed; BO_p, best observed proxy; BI_p, best imputed proxy.
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individual genotyping, by using FINEMAP and LDlink tools. In addition
to this selection, the genome-wide associated SNP (p-
value=2.8×10−8) at Chr18, was included in the replication step
(Supplementary Fig. 2). A total of 28 SNPs in nine chromosomal regions
were chosen for replication testing in the Valencia cohort. All of them
were in Hardy-Weinberg equilibrium (p-value>0.001). Results of the
association analysis and minor allele effect sizes for selected SNPs are
shown in Fig. 2.

3.3. SMYD2 replicated the association in an independent sample

Five variants out of 28 analyzed were associated with a PD in the
validation cohort, overlapping with the SMYD2, LARP4,
RP11–472N19.3. The observed variant effect size was in the same di-
rection in both discovery and validation samples, except for the variant
in LARP4 (Fig. 3). Variants in SMYD2 and RP11-472N19.3 were sta-
tistically significant. SMYD2 carry two variants, chr1:214502898-
rs4655246 and chr1:214503489-rs2291830, associated with a poor
outcome in both cohorts. Minor alleles at two positions (p-
value=1.9×10−3, freq.=0.31 and p-value=1.0×10−6, freq.=0.41
for BREC; p-value= 0.016, freq.=0.32 and p-value= 0.038, freq.=
0.42 for validation sample) were associated with PD in BREC and va-
lidation cohort. The rs4655246-C allele variant, and the rs2291830-T
allele variant showed a strong effect towards progressing disease;
OR=3.33 and OR=1.47 for C-allele, and OR=7.02 and OR=1.26 for
T-allele, for BREC and the validation cohort respectively. In
RP11–472N19.3, two variants, chr14:92726738-rs7142050 and
chr14:92726813-rs4904853, show a protective effect (i.e. favoring non
progressing disease) by the minor allele for both cohorts (p-
value=6.9×10−3, freq.=0.3 and p-value= 1.4×10−4, freq.=0.22 for
BREC; p-value=0.045, freq.=0.34 and p-value=0.035, freq.=0.23 for
validation sample); for the rs7142050-A allele variant the effect size
was OR=0.39 and OR=0.81, and for rs4904853-C, OR=0.23 and
OR=0.75, for BREC and the validation cohort respectively.

3.4. SMYD2 variants have an impact on survival endpoints in the validation
cohort

Survival analysis was assessed in the replicated regions, and only
reach statistical significance for SMYD2. Impact on survival outcomes
was analyzed for overall changes in survival (OS) as well as in time to
progression (TTP). We then stratified survival analysis by outcome (i.e.
disease progression) to test the impact on other aspects of survival
outcomes. Median OS and TTP was lower in the PD patients from those
with response and stable disease (non PD); OS=6 months (CI95%=
[5.1,7.1]) and 13.4 (CI95%=[12.1,15.7]) and TTP=2.8 months
(CI95%=[2.6,3.1]) and 7.9 months (CI95%=[7.5,8.4]). Summary re-
sults for SMYD2 variants are presented in Table 2.

In SMYD2, three analyzed variants (rs6665343 G/A, rs11120295 C/
T, rs2291830 T/G) were associated with a reduced survival time. OS
was shorter for the rs6665343-A, rs11120295-T, rs2291830-T allele
carriers, showing a dominant effect. Allele variant rs6665343-A carriers
had a shorter OS; 12.8 to 9.7 months (p-value= 0.020, HR= 1.370
95% (1.047–1.787)), allele variant rs11120295-T shows similar re-
duction of OS (12.5 to 9.7 months, p-value= 0.022, HR=1.368 95%
(1.047–1.787)), and rs2291830-T shows the lower effect, with a slight
reduction (10.4 to 9.8 months, p-value= 0.036, HR=1.289 95%

Fig. 3. Forest plot diagram of the replicated variants in the discovery and validation sample. Variants in SMYD2 (chr1:214502898; chr1: 214503489),
RP11–472N19.3 (chr14:92726738; chr1492726813) show the same effect direction, but it is discordant in LARP4.

Table 2
Results from survival analysis for overall survival (OS) and time to progression
(TTP) of significant variants in the validation sample.

Gene Variant HR (95% CI) p-value

(OS) SMYD2 chr1:214481630-rs6665343-A 1.370 (1.050, 1.788 0.020
chr1:214495703-rs11120295-
T

1.368 (1.047,
1.787)

0.022

chr1:214503489-rs2291830-T 1.289 (1.017,
1.633)

0.036

(TTP) chr1:214495703-rs11120295-
T

1.331 (1.020,
1.737)

0.035

Variant, chromosome position in GRch37/hg19, rs identifier and the allele ef-
fect; HR (95% CI), hazard ratio; 95% confidence interval of the hazard ratio; p-
value of the variant calculated from the Cox regression model with gender, age,
ECOG, progression disease and stage as covariates.
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(1.017–1.633). When considered survival, only rs11120295-T allele
was associated with shorter TTP with a dominant effect for the common
allele (freq.=0.53) with a reduction in 1.6 months (from 6.9 months to
5.3 months, p-value = 0.035, HR= 1.331 95% (1.020–1.737)) (Fig. 4).
In the BREC cohort, individual survival data was not available but in
concordance, rs11120295-T allele was associated with a PD outcome
(OR= 0.25, CI95%= [0.12, 0.52], p-value = 1.3 ×10−4).

3.5. Pathway analysis

From the filtered raw association signals shown in Fig. 1, we per-
formed the functional characterization of the 889 selected genes over-
lapping with genome scan signals with a nominal p-value< 1×10−4.
Nine GO pathways were significantly enriched with the overlapping
genes (Table 3). The sequence-specific DNA binding pathway (GO:
0043565) (OR=5.32, p value=0.0050) with nominal values over-
lapping ATF1, PAX7, TBX3, IRX5, IRX3 and CERS5, and the cAMP-
mediated signaling pathway (GO:0019933) (OR=13.60, p
value=0.0054) highlighted by the ADM, EIF4, EBP2, PDE4D, RAPGEF2,
PCLO genes were the most significant ones. None of the Reactome
pathways reached significant level after multiple-testing correction.

4. Discussion

To better understand the germline genetic factors modulating dis-
ease progression in advanced NSCLC with first-line platinum-based
treatment we performed a genome wide analysis in a two-stage ap-
proach, including two independent populations with the same ethnic
ancestry. Our results provide evidence for implication in disease pro-
gression and overall survival of germline genetic variants in SMYD2.

In our study, the SMYD2 variant chr1:214503489-rs2291830 T/G, is
associated with poor clinical outcome for treated patients. The effect
size observed for the rs2291830-T allele is the highest SMYD2 signal
observed in our study; OR=7.02, CI 95%=[2.88−17.12].
Furthermore, survival analysis shows that rs2291830-T carriers have a
reduction in the survival time (10.4 to 9.8 months, p-value= 0.036) in
the validation cohort. SMYD2 (SET and MYND domain containing 2)
encode for one of the SMYD methyltransferase family proteins
(SMYD1–5) [18], some of which have already been reported as candi-
date targets for anticancer drugs [48]. SMYD2 is overexpressed in

multiple cancer cells [10], and in addition to histones, methylates other
protein substrates, including RB1 and p53, leading to loss of its tumor
suppressive function [23]. There are also interesting observations,
showing that depletion of SMYD2 is linked to cancer chemotherapy
improvement, through the reduction of PARP1 activity, which is in-
volved in DNA repair, chromatin modification, transcriptional regula-
tion and genomic stability [40]. Concordantly, genetic variants in
PARP1 have been associated to a better response to platinum-based
chemotherapy in NSCLC [46]. Furthermore, a prognostic value has
been proposed for this protein, but there is contradictory data on
functionality, while SMYD2 overexpression has been reported as a bad
prognostic factor in leukemia, esophageal squamous cell carcinoma and
gastric carcinoma, low expression levels in renal tumors have been
associated with worse disease-specific survival and disease-free survival
[41]. Supporting the role in the carcinogenic process, Nakamura's
Group recently reported SMYD2-mediated ALK methylation as a new
mechanisms regulating cell growth in NSCLC ALK-fused gene cell lines
[52].

The other SMYD2 variants in close LD (rs6665343, rs4655246,
rs11120295, rs2291830, r2> 0.60) were concordant with the observed
SMYD2 association (Fig. 2), however, none of the variants had any
clinical significance. No variation effect on protein function was ob-
served using SIFT and Polyphen analysis. All variants were intronic.
Expression quantitative trait loci (eQTL) analysis was performed, a
significant cis-eQTL, on SMYD2 expression for rs2291830-T allele
(pvalue= 7.30 x10−7, eQTL effect size (es)= −0.31), as well for
rs6665343-A, rs4655246-C and rs11120295-T alleles. (pvalue=
3.3×10−5, es-0.16, pvalue= 3.7 pvalue= 3,7 × 106, es= 0.17, and
pvalue= 4.3×10−5, es=−0.17) was present in transformed samples
(fibroblasts) on the GTEx database (Release V6p (dbGaP Accession
phs000424.v6.p1), and non-transformed samples (peripheral blood
cells) (pvalue= 3.4 10−6, pvalue= 9.2 × 10–11, pvalue= 2.11 × 10−9,
pvalue= 2.6 × 10–11) from Westra et al. [53] but not in lung tissues.
However, a trans-eQTL, was observed when consider lung tissue sam-
ples on KCNK2 (potassium two pore domain channel subfamily K member
2) expression; rs6665343-A, rs11120295-T, and rs2291830-T alleles
were correlated with a higher expression of KCNK2 (pvalue=
1.1×10−2, es= 0.18). KCNK2 belongs to the two-pore-domain back-
ground potassium channel protein family, and interestingly over-
expression of the channel protein, in prostate cancer, has been

Fig. 4. Kaplan Meier plot for the validation sample: overall survival (OS) and time to progression (TTP) of patients with risk (CT-TT) and non-risk genotypes (CC) for
the rs11120295 SMYD2 variant.
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associated with a reduced survival, while knockdown inhibits cell
proliferation in vivo [56].

In order to identify possible functional haplotypes, we estimated
genewide haplotype structure of SMYD2, and haploblocks were inferred
with the CI method as implemented in Haploview. All four variants
were in the same block, the largest conserved block in the 3′-terminal
region, but interestingly rs4655246-C/G differentiate two different
haplotypes; ATCT (freq=0.315) and ATGT (freq= 0.093), suggesting a
functional role for ATCG / ATCT haplotype carriers.

Genes frequently methylated in lung cancer cells and associated
with oncogenic growth of cancer cells could be targets of SMYD2,
which is over-expressed in most cancer types. All of the validated me-
thylated substrates of SMYD2 are implicated in stress responses and
cellular checkpoints, it is possible that overexpression and dysregulated
methylation activity could lead to compromised chemotherapy re-
sponse and reduced overall survival [12,44]. Nowadays, 20 published
non-histone proteins have been reported as validated targets of SMYD2
[1]. In concrete, some authors have reported that SMYD2-methylation
mediated of RB1, HSP90, PTEN, PARP1 has a critical roles in tumor-
igenesis [10,19,36,40], and confirm, as a possible common mechanism
for SMYD2 cancer progression, a SMYD2-mediated methylation causing
the nuclear translocation of b-catenin and activation of Wnt/b catenin
signaling pathway [12], a hallmark of a large proportion of human
cancers. A higher methylation activity leads to an increased nuclear
translocation activity for b-catenin, then to a high activation of the
Wnt/b-catenin pathway and cancer cell progression. However lower
activity could produce the contrary effect, leading to cancer cell death
apoptosis, hence a higher resistance to the cisplatine action.

Identified genetic polymorphism show neighborhood enrichments
of chromatin functional annotations in rs4655246 with enhancer and
promoter functions (i.e., 11_TxEnh3, H3K4me3_Pro, H3K27ac_Enh)
(Roadmap Epigenomics Consortium, 2015). Even out of the promoter
regions, this could suggest a cryptic promoter region modulating the
expression of alternative regulatory transcripts, but to date only one
alternative transcript has been described in placenta tissues.

We do not have any available data for somatic mutations and me-
thylation in cancer cells of those patients, and further studies will be
needed to clarify the significance of SMYD2 polymorphisms.

Another interesting finding from our study is RP11–472N19.3., a
long non-coding RNA (lncRNA) locus. LncRNAs are normally found as
endogenous cellular RNAs, larger than 200nt, and lacking an open
reading frame of significant length. They are functional RNA elements,
expressed at low levels in a tissue-specific and time-restricted manner.
RP11–472N19.3. is transcribed in several tissues, including lung, but to
date no phenotype, functional annotation or eQTL have been reported

in this locus. The uncommon rs7142050-C allele was associated to a
better prognosis, suggesting RP11–472N19.3 as a possible new candi-
date therapeutic target for lung cancer treatment. Based on several
evidences (score 2b RegulomeDB, Version 1.1.) the variant rs7142050,
is likely to affect binding of several transcription factors such as IRF4
(Interferon Regulatory Factor 4), SPI1 (Spi-1 Proto-Oncogene), and ATF2
(Activating transcription factor 2). ATF2 is a transcription factor involved
in stress and DNA damage which has been recently involved in cisplatin
resistance in non-small cell lung cancer. LncRNAs are regarded with
increasing interest as new targets for cancer therapy. Dysregulation of
lncRNA expression has been implicated in lung cancer etiology, onco-
genic or tumor suppressive. Zhou et al., proposed a eight-lncRNA sig-
nature as an effective independent prognostic molecular biomarker in
the prediction of NSCLC patient survival [57]. Recent studies, using
RNAi experiments to inhibit HOTAIR (Hot Transcription Antisense
RNA), have reported a decreased migration, invasion and metastasis in
NSCLC cells along with reduced expression of genes involving and an-
tisense RNA inhibitory process. Similar results were reported for
MALAT1 (Metastasis Associated Lung Adenocarcinoma Transcript 1) in
mouse lung cancer models [14].

In addition to the single analysis, we performed a pathway enrich-
ment analysis to analyze all excluded signals (pvalue>1×10−5) from
the replication phase. With this analysis we highlighted several path-
ways involved in differential clinical outcome. Some of the identified
signals were in primary retained regions with a suggestive profile but
were discarded prior to the replication phase (PAX7, IRX5, or ATF1).
SMYD2 has been identified in the pathway enrichment analysis be-
longing to one of the statistically significant overrepresented pathways;
GO:0006351 (OR= 2.4, p-value= 0.036), a wide functional category
that includes transcription regulator activity genes. Furthermore, it is
interesting to note two of the enriched pathways. The cAMP-mediated
signaling pathway (GO:0019933) is the second most significantly as-
sociated term (OR= 13.60, p value= 0.0054), with 5 genes out 22
associated to clinical outcome (ADM, EIF4, EBP2, PDE4D, RAPGEF2,
PCLO). Among them, EBP2 (EBNA1-binding protein (homolog)) and
PDE4D (Phosphodiesterase 4) are relevant as therapeutic targets for
lung cancer therapy. EBP2 has been reported as a novel binding partner
of c-Myc, regulating the function of nucleolar c-Myc, cell proliferation
and tumorigenesis [28], and PDE4D has been reported as a promoter of
proliferation and angiogenesis of lung cancer [42]. Moreover, the Wnt
signaling pathway (GO:0016055) was overrepresented, with 10 out 150
genes (HHEX, PITX2, TLE3, TLE4, FZD4, PYGO1, WWOX, CXXC4,
NKD2, RSPO2H)(OR=3.35 p value= 0.03). In NSCLC it has been re-
ported that Wnt ligand and Fzd are overexpressed and that Wnt an-
tagonists are downregulated [37]. The same authors suggest that

Table 3
Summary of the pathway enrichment analysis results in the discovery sample.

Method GWAs GO:ID Description Corrected p-
value

OR Intersect
count

GO count Intersect genes

PANTHER −4 GO:0019864 IgG binding 0.016 20.46 5 12 FCGR2A FCGR3B FCGR2C FCGR2B
FCGR3A

PANTHER −4 GO:0060986 Endocrine hormone secretion 0.032 22.32 5 11 GATA3 CGA GHRL TBX3 FZD4
seq2pathway −4 GO:0019933 cAMP-mediated signaling 0.005 13.60 5 22 ADM EIF4 EBP2 PDE4D RAPGEF2 PCLO
seq2pathway −4 GO:0010595 Positive Regulation Of Endothelial Cell

Migration
0.026 7.70 5 35 AGT ANGPT1 GATA3 PROX1 NRP1

seq2pathway −5 GO:0006351 Transcription, DNA-templated 0.036 2.41 10 1766 PTPN14 TBX3 IRX5 IRX3 SALL3 ESF1
SMYD2 EBF2 ING5 TLE3

seq2pathway −5 GO:0045893 Positive regulation of transcription,
DNA-templated

0.03 4.15 5 487 PROX1 TBX3 TASP1 EBF2 ING5

seq2pathway −4 GO:0016055 Wnt signaling pathway 0.03 3.35 10 150 HHEX PITX2 TLE3 TLE4 FZD4 PYGO1
WWOX CXXC4 NKD2 RSPO2

seq2pathway −5 GO:0003700 Sequence-specific DNA binding
transcription factor activity

0.018 3.11 7 990 ATF1 PAX7 TBX3 IRX5 IRX3 CERS5
PROX1

seq2pathway −5 GO:0043565 Sequence-specific DNA binding 0.005 5.32 6 500 ATF1 PAX7 TBX3 IRX5 IRX3 CERS5

Methods, PANTHER and seq. 2pathway overrepresentation methods; GWAS, p-value below 10−4 and 10−5 threshold for SNP inclusión; Corrected p-values on seq.
2pathway correspond to FDR while corrected p-values on PANTHER overrepresentation tests are adjusted with Bonferroni correction.

I. Galván-Femenía et al. Cancer Treatment and Research Communications 15 (2018) 21–31

28



elevation of the β-catenin pathway is a common mechanism for con-
ferring resistance to cancer treatment, not only to EGFR tyrosine kinase
inhibitors (TKIs), but also to other types of treatment, including che-
motherapy and radiotherapy. In NSCLC, a study reported inherited
genetic variation in the Wnt signaling pathway contributing to variable
clinical outcomes for patients with early-stage disease [8]. The in-
volvement in NSCLC, but in different stage could indicate a common
mechanism related to resistance in both phases of the disease.

In the last years, genetic analysis of somatic variation has yielded
valuable profiles for lung cancer subtype classification and prediction of
response to treatment [4,24]. Individual germline genetic configuration
could help to improve disease management and guide treatment choice
decisions. GWAS has been used successfully to identify susceptibility
genes to lung cancer, has also been used to identify prognostic and
predictive biomarkers to response in early [50,55] or advanced NSCLC
patients [22,27,45,54], as well as to analyze adverse effects of drug
treatment [6,7,49]. Any of the genes uncovered in our study has been
previously reported in advanced NSCLC patients treated with che-
motherapy. Most of the reported GWAS (GWAS catalog) are from Asian
ancestry populations (11 out 12), and, until now, only one study is from
European ancestry patients [54]. Other study using mixed ancestry data
come from a different approach using cell lines in the discovery phase.
As seen for susceptibility factors, ethnic differences could account for
these inconsistencies.

Here, using a genomewide screening approach, we have identified a
gene with potential clinical value in advanced NSCLC patients treated
with chemotherapy. It is noteworthy that our approach takes advantage
of massive variation information collected in deep sequencing derived
public panels to empower the study. Identified SMYD2 variant have
been genotyped by imputation, and inferred genotypes predicted by
IMPUTE2 info shown a highly concordance (average for all inferred
variants 96.9%) with genotyping. As widely reported elsewhere, these
results corroborate the power of SNP imputation using sequencing de-
rived panels for improving genome scanning results.

We identified 20 regions in the exploratory sample, and even if
those signals did not reach genomewide significance, we have re-
plicated one region in an independent sample. All signals remained
significant in the joint analysis, however, heterogeneity analysis for
replicated variants precluded any joint meta-analysis interpretation
(median, mean I²=92.2%, 84.9%). We can discard a genetic bias from
different ethnicity since both cohorts are from the same wide-geo-
graphical area (Spain), and share the same ancestry; or from genotyping
platform, or imputation, since a high correlation was observed in our
study among imputation panels. But slight differences were present
regarding stage, histological type, and ECOG status that could account
for these heterogeneous values. Even if clinical regimens are standar-
dized we cannot underscore the effect of these differences between
cohorts. Moreover, the treatment choices in both cohorts were slightly
different, and therefore even if we account for these differences in the
analysis, in the BREC cohort, we cannot overcome if present the distinct
effect of cisplatin and the other dual combination chemotherapies
(cisplatin-gemcitabine, cisplatin-docetaxel) in the genetic variant ef-
fects. Cisplatin enters cells via multiple pathways, and forms DNA-
platinum adducts initiating a cellular self-defense system resulting in
cancer cell destruction. Since resistance is supposed to be pleiotropic,
these differences do not invalidate the identified signals. In the same
way, a pleiotropy of alterations could be related to natural or acquired
resistance [16].

Data dimensionality in genome wide analyses is a major concern
when applied to clinical cohort series, generally composed by a small
number of patients. In order to increase the robustness of the results,
our study only considered signals with a reasonable effect in a two-
stage design. The large effect size observed for SMYD2 alleles in the
BREC cohort should be considered with caution, since overestimation of
the initial effect size could be present. In addition, we cannot discard
that other genomic mutations, further than EGFR mutations, could be

confounding the results.

5. Conclusion

In conclusion, our study identified germline genetic variation in
SMYD2 associated to bad clinical outcome (PD) in first-line platinum-
based treatment in advanced NSCLC patients. These results support the
biological significance of methylation process in human carcinogenesis,
and open up new drug targeting possibilities and patient stratification
in lung cancer therapy based on germline profiling. SMYD2 profiling
could represent an additional prognostic biomarker to better tailor
multidisciplinary treatment of patients.

Clinical practice points

• What is already known about this subject?
Tumor genomic profiling of advanced NSCLC patients determines an
increase in the overall survival rates when matched therapies are
provided compared with cytotoxic chemotherapy
In advanced NSCLC patients under first-line cytotoxic che-
motherapy, tumor profiling is always a tardy option.
Furthermore, repeat tissue biopsies should be avoided and some-
times genomic profiling is precluded due to exhausted sample.
Alternative, germline variants are identified as a valuable prognostic
marker in those patients (e.g. DNA-repair genes, CTNNB1 or
CMKLR1).

• What are the new findings?
In this article, we have show that genetic variation on SMYD2 is a
biomarker for a bad outcome and reduced overall survival of ad-
vanced NSCLC patients when risk alleles are carried at germinal
level.
Multivariate survival analysis showed that genetic variants were
independent prognostic factors.
We report evidences of SMYD2 genetic variation impact on its own
expression, and support the biological significance of methylation
process of SMYD2 in human carcinogenesis.

• How might it impact on clinical practice in foreseeable future?

Evidences for SMYD2 genetic variation lead to new drug targeting
possibilities.

SMYD2 alleles could be used as a biomarker for patient stratification
in lung cancer therapy prior to tumor genomic profiling.
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